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Investigation of the Relationship between Topology and Selectivity for Druglike Molecules
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There is a strong interest in drug discovery and development to advance the understanding of pharma-
cological promiscuity. Improved understanding of how a molecular structure is related to promiscuity
could help to reduce the attrition of compounds in the drug discovery process. For this purpose, a
descriptor is introduced that describes the structural complexity of a compound based on the size of its
molecular framework (MF) in relation to its overall size. It is defined as the fraction of the size of the
molecular framework versus the size of the whole molecule ( fMF). It is demonstrated that promiscuity
correlates with fMF for large fMF values. The observed correlation is not due to lipophilicity. To provide
further explanation of this observation, it was found that the number of terminal ring systems in a
compound is correlated with promiscuity. The analysis presented here might help medicinal chemists to
improve the selectivity for compounds in drug discovery projects.

Introduction

The exponential advance made over the past decade in
human genomic and proteomic research has had a big influ-
ence on the search for new therapeutic agents. The prevailing
assumption is that single agents that modulate distinct ther-
apeutically relevant targets confer better therapeutic efficacy
and fewer side effects in most disease areas. Consequently,
most of the drug discovery projects are focused on designing
highly selective compounds. Pharmacological promiscuity
is especially undesirable for this “one drug, one target”
paradigm.1-3 However, there are cases (e.g., complex dis-
eases such as Alzheimer’s disease4 and central nervous system
disorders5) for which the design of newmedicines that address
multiple targets simultaneouslymaybedesirable.There is also
evidence for promiscuity as a key contributor to the clinical
efficacy of many newer anticancer drugs.6 An understanding
of the molecular and structural basis for compound promis-
cuity could help to design, optimize, and prioritize suitable
lead structures at the earliest possible stage of a drug design
project and therefore significantly increase research produc-
tivity.

In pharmaceutical research, off-target activities (secondary
pharmacology) are usually inferred from in vitro testing of the
compound against a panel of proteins.7 Published computa-
tional models investigating the relationship between promis-
cuity andadverse effects havebeenbasedon such types of data
sets.8-10 Several recent studies showed that lipophilicity
(ClogP) is a principal determinant of pharmacological pro-
miscuity. A compound with high ClogP usually exhibits
higher promiscuity than a compound with low ClogP. Other
molecular properties such as ionization state, basicity, and
presence of certain functional groups have also been found to

influence promiscuity.11-15 Several studies have been pub-
lished on the relationship between molecular size and pro-
miscuity. Analysis of a high-throughput screening (HTS) data
set11 showed that promiscuity decreaseswithhighermolecular
weight (MW). However, this result is in contrast with the
analysis of safety pharmacology profiling data.7 This analysis
showed that molecules with higher MW are more promiscu-
ous.Ananalysis byLeeson et al.13 on theBioPrint data set and
in-house cross-screening data showed no clear relationship
betweenMWandpromiscuity. Similar resultswere also found
in another study.15 The different conclusions indicate that a
potential correlation between size and promiscuity is highly
context dependent.

However, even though promiscuity may not directly link to
the size of compound, it could still be influenced by the
molecular topology. In this article we focus on investigating
the correlation between promiscuity and a generic structural
description of a compound. Applying more interpretable
structural features for describing a molecule might provide
further insights to itspharmacological response.For thispurpose,
we first divided the molecule into a molecular framework
(MFa) and side chains as defined by Bemis andMurcko.16,17

The descriptor fMF is defined as the number of heavy atoms
(Nheavy) in the MF divided by the total number of heavy
atoms in the molecule as shown in eq 1, where fMF ∈ [0, 1].

fMF ¼ NheavyMF

Nheavytotal
ð1Þ

A simple interpretation of this descriptor is that molecules
with low fMF values have relatively small frameworks and are
decorated with many and/or larger side chains. On the other
hand, a molecule with a high fMF has a large MF and only a
few side chain atoms. Compounds with fMF= 1 have no side
chains at all. Acyclic molecules (fMF= 0) that do not contain
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any ring system are not included in this analysis. fMF is not
correlated to the number of heavy atoms (r2=0.007 for the
BioPrint data set used in this study), and the descriptor there-
fore describes the molecular topology in a size independent
way. It is demonstrated that promiscuity increases for large
fMFand that theobserved increase is not related to lipophilicity.
To further explain this observation, themoleculeswere divided
into four different classes basedon their topology.The relation-
ship between the four topology classes and promiscuity was
analyzed.

Methods

Molecular Framework Analysis. The main descriptor used in
the analysis is based on the hierarchical molecular classification
scheme proposed by Bemis and Murcko.16,17 As can be seen in
Figure 1, Camostat can be fragmented into three side chains and
a MF. The MF consists of two rings connected by a two-atom
linker. The fMF of Camostat can be calculated as the number of
heavy atoms in theMF (14) divided by the total number of heavy
atoms in the molecule (29); accordingly, fMF is 0.483.

Since the MF is obtained by pruning all terminal side chain
atoms, it consists of all the ring systems and linkers in a molecule.
In an attempt to further investigate how aMF relates to promis-
cuity, we classified the MFs according to their ring system
topology. In order to classify compounds into only a few distinct
topology classes for our analysis, a more abstract topological
classification scheme is used compared to other methods such as
the molecular equivalence indices (MEQI).18,19 Once the MF is

generated, ring systems connected to only one other ring system
are identified and labeled as terminal rings (TRs). All other
atoms between the TRs are grouped together and labeled as the

Figure 1. Disconnecting side chains from the original molecule leads to its molecular framework.

Figure 2. Examples of the four different topology classes (TR =
terminal ring, B = molecular bridge).

Figure 3. Relationshipbetweenmedianpromiscuityand lipophilicity,
ClogP (a), and the relationship between median promiscuity and
number of heavy atoms, Nheavy (b), for 2267 compounds from the
BioPrint data set.

Figure 4. Relationship between the median promiscuity and fMF:
(a) p<0.0001; (b) p<0.01.
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molecular bridge. We can now classify molecules into different
topological classes according to the number of terminal ring systems
and the presence of amolecular bridge as shown in Figure 2. For
example, compound I belongs to the “one terminal ring system”
(1TR) class. This class containsmoleculeswith only one ring system
andnomolecularbridge.Compound IIbelongs to the“twoterminal
ring systems” (2TR) class. This class contains molecules with two
ring systems directly connected to each other and no molecular
bridge. Compound III belongs to the 2TR þ B class. This class
contains molecules with two terminal ring systems and a molecular
bridge. Compound IV belongs to the 3TR þ B class. This class

containsmoleculeswith three terminal ring systems and amolecular
bridge. Since almost all molecules belong to these four topology
classes according to our study, compounds containing four or even
more terminal ring systems were not considered in this analysis.

TheMFand side chainswere generated using Pipeline Pilot.20

fMF, number of heavy atoms, and MW were calculated with

Figure 5. Median promiscuity versus fMF for the four ClogP intervals. The differences between the 0.75 and 0.95 bins are statistically
significant with p < 0.0001 for parts b, c, and d and with p < 0.001 for part a.

Figure 6. Median promiscuity for the four different topology
classes: (a) p < 0.0001; (b) p < 0.01; (c) p < 0.04.

Figure 7. Median promiscuity versus fMF for the four different
topology classes. For the 2TR and 2TRþ B classes the changes are
statistically significant with p < 0.0001 and for the 3TR þ B class
with p < 0.0005 between the 0.75 and 0.95 bins. The changes seen
for 1TR are not statistically significant because of too few com-
pounds for the 0.95 bin. The number of compounds for each
topology class and fMF are given in Table S1.
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PipelinePilot.ClogPwascalculatedwithBioByte’sClogPprogram.21

The classification of the MFs into topological classes was done
with an in-houseCþþ programbased on theOEChemToolkit.22

Bioactivity Data. The analysis is based on selectivity data of
2267 compounds from the BioPrint database.13,23 The data set
consists mainly of marketed drugs, withdrawn drugs, and refer-
ence compounds. They have been tested in a panel of more than
200 diverse protein targets representing various target families
likeGPCRs, ion channels, transporters, and enzymes. The promis-
cuity score for each compound was defined as the number of
targets for which the compound displayed g50% inhibition
(at 10 μM) divided by the total number of panel targets the
compound has been screened against. Very small and large com-
pounds (outside the range of 5-60 heavy atoms) were deemed
irrelevant for this analysis and were therefore removed. The
nonparametric Wilcoxon rank-sum test24 was applied to
determine whether the differences in median promiscuity
were statistically significant. All statistical analyses were
performed with JMP.25

Results and Discussion

First, the relationships betweenpromiscuity and lipophilicity
(ClogP) and between promiscuity and size (number of heavy
atoms, Nheavy) were investigated for the data set. The ClogP
and Nheavy values were binned and then plotted versus the
median promiscuity. The results are shown in Figure 3, and
they are in agreementwith results fromprevious studies.7,13,15As
expected, the promiscuity increases with increasing ClogP. The
relationship between promiscuity and molecular size, as mea-
sured byNheavy, shows an overall trend that larger compounds
are more promiscuous. However, the trend is less pronounced

than forClogP.Thus, the conclusion could be affected by exactly
which compounds have been tested.We believe that our result is
in linewith thedivergent conclusions for the relationshipbetween
size and promiscuity reported by other groups.7,11,13,15

Thereafter, how fMF relates to promiscuity was investi-
gated. The results are shown in Figure 4. Compounds with
fMF larger than 0.65 are significantly more promiscuous than
compounds with a smaller fMF. The change in median pro-
miscuity between the fMF bins is statistically significant with a
p<0.0001, when fMF is above 0.75. To distinguish the effect
of fMF on promiscuity from the effect of lipophilicity, the data
set was divided into four bins corresponding to ClogP of<1,
1-3, 3-5, and >5. Figure 5 shows that the same trend is
observed for all the different ClogP ranges. This result con-
firms that fMF has a unique effect on the promiscuity that is
not dependent on compound lipophilicity. However, the
median promiscuity is highest for compoundswithClogP>5
and lowest forClogP<1,asalready shown inFigure 3a.Note
that because the fMF represents the size of the MF in relation
to the compound size, the descriptor is uncorrelated to the
overall size of the compound.

In order to be able to interpret the observed promiscuity
trend, the compounds were classified according to their
topology as discussed in the Methods. As can be seen in
Figure 6, compounds belonging to the 1TR class show the
highest selectivitywhile compounds belonging to the 3TRþB
class are the most promiscuous. The Wilcoxon rank-sum test
shows that the differences in promiscuity between the topo-
logical classes are statistically significant. In Figure 7 it is
shown that for all four topology classes the promiscuity

Figure 8. Median promiscuity for the four different topology classes and ClogP ranges.
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increases when fMF is above 0.65. However, the magnitude is
very different for the different topological classes. The
increase in promiscuity is small for the 1TR class and not
statistically significant, while the increase is much larger for
the other topology classes. These results indicate that com-
pounds with only one ring system and many side chain atoms
are on averagemore selective than compounds of the opposite
type. Most of the compounds with a fMF value larger than
0.65 belong to the 2TRþ B and 3TRþ B classes (Table S1 in
the Supporting Information). Median values for fMF, ClogP,
and heavy atom count for each topology class are given in
Table S2.

How the topological classes are related to molecular size
and lipophilicity was also investigated. The results are shown
in the Supporting Information.Figure S1 shows that the trend
with respect to promiscuity and ClogP is the same for all the
four topology classes and consistent with the overall behavior
shown inFigure 3a. In contrast the relationshipbetweenpromis-
cuity and molecular size differs significantly between the four
topology classes and is generally irregular (Figure S2). Figure 8
shows that the promiscuity trends for the topology classes are
more complex when the compounds are grouped according to
theirClogP. ForClogP=1-3 all the topological classes show
roughly the same promiscuity, while for ClogP > 3 the 1TR
class has the lowest promiscuity and the 3TR þ B class the
highest. The highmedian promiscuity for the 3TRþB class is
especially noteworthy. Thus, for low fMF, 1TR is the most
common topological class and it is also generally the most
selectiveone.For larger fMFother topological classes aremore
common, and these are also in general more promiscuous.
This trend is independent of lipophilicity for ClogP> 3. The
results indicate that the ring system for compounds in the 1TR
class makes significant contribution to the binding to the

primary target but is less likely to match secondary targets.
The other topological classes might have larger conforma-
tional freedom that could result in higher promiscuity. In
Figure 9 several representative examples of compounds from
theBioPrint data set are displayed.The chosenmolecules have
a ClogP roughly in the interval between 2 and 3. In general,
molecules with smaller fMF containing only one ring system
tend to be more selective. More promiscuous molecules
usually have larger fMF and more than one terminal ring
system.

Conclusions

A correlation has been found between the descriptor fMF

and promiscuity for the BioPrint data set.Molecules with fMF

above 0.65 are generally more promiscuous than other mole-
cules. Accordingly, molecules with a large molecular frame-
work and only a few side chain atoms exhibit higher promis-
cuity than other types of molecules. Dividing the molecules
into several topology classes showed that compounds with
only one ring system were the most selective. It has also been
shown that the effect of fMF is not related to the lipophilic
effect on promiscuity. Hydrophilic compounds with a large
fMF are still more promiscuous than hydrophilic compounds
with a small fMF.Molecules in the 1TR topological class show
the highest selectivity. 1TR is also the most common topo-
logical class for molecules with an fMF below 0.6. The topo-
logical classes 2TRþ B and 3TRþ B are more common and
also more promiscuous for molecules with a large fMF. The
3TRþB class exhibits especially highmedian promiscuity. In
the future we are planning to investigate how fMF relates to
ADMEproperties as well as the relationship to other types of
descriptors. In conclusion the results in this paper show that

Figure 9. Examples of compounds with increasing fMF (from top to bottom) and promiscuity (Prom).
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the topology of the molecule is affecting the promiscuity for
the BioPrint data set. The findings here indicate how selec-
tivity can be modulated in drug discovery projects.
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